

Membrane Limits in Quantum Gravity

based on arXiv:2112.09136 (Phys .Rev. D 105) with R. Álvarez-García and T. Weigand

Daniel Kläwer July 5, 2022

String Phenomenology 2022 - Liverpool

klaewer.com/publications

30 Second Summary of My Talk

universality at infinite distance $\Delta \phi \rightarrow \infty$

distance conjecture

must ∃ infinite tower of states (which dictates the physics)

emergent string conjecture

Kaluza-Klein (decompactification)

string excitations (duality)

what about higher dimensional objects?

New result: (critical) membranes must decouple!

Infinite Distance & Emergent String Conjecture

Infinite Distance & Emergent String Conjecture

Landscape:

EFT consistent with quantum gravity

Swampland:

EFT inconsistent with quantum gravity

Swampland conjectures:

landscape vs. swampland

What is the physics of extremely large scalar field displacements in quantum gravity?

 \exists ! Infinite tower of states with $m \sim e^{-\alpha \Delta \phi} M_{\rm pl}$, where $\Delta \phi$ is distance in field space.

[Ooguri, Vafa '06]

Emergent String Conjecture: Infinite distance limits in the moduli space of a consistent theory of quantum gravity fall into two classes:

Decompactification

Kaluza-Klein tower—arising e.g. from an expanding component of the geometry—dominates the limit.

Emergent String

Excitations of a unique string—arising e.g. from wrapping an extended object on a shrinking component of the geometry—dominate the limit.

[Lee, Lerche, Weigand '19]

- Strong evidence for the conjecture: compactifications of string and M-theory.

 [Lee, Lerche, Weigand '18-'21] [Baume, Marchesano, Wiesner '19] [Xu '20]

 [DK, Lee, Weigand, Wiesner '20] [Basile '22] [...]
- Backreaction of EFT strings
 [Lanza, Marchesano, Martucci, Valenzuela '20-'22] [Marchesano, Wiesner '22]
- Most evidence in supersymmetric settings (but see [Basile '22] for non-SUSY)

Often we have both towers. What exactly do we mean by "dominate"?

pathological string limit

emergent string limit

$$M_{\rm KK}^2 \sim T_{\rm str}$$

decompactification limit

$$M_{
m KK}^2 \ll T_{
m str}$$

 $T_{
m str} \ll M_{
m KK}^2$

- Limit with $M_{\rm KK}^2/T_{\rm str} \to \infty$ decouples a KK tower.
- The new critical string appears to propagate in less than 10 dimensions.
- Not expected in string theory. Try to decouple KK tower → get dual winding tower.
- We consider such behavior pathological.
- Should be censored in a consistent theory.

- Pathological situation does appear in tree-level string compactifications.
- But: Quantum corrections (e.g. α') obstruct such limits. [DK, Lee, Weigand, Wiesner '20].
- After taking quantum corrections into account, all limits are of decompactification or emergent string type.
- Upshot: Theory is smart, but we have to be smart and compute all the corrections, too!

"Emergent membrane limits"?!

 $T_{\mathrm{brane}} \sim M_{\mathrm{KK}}^{p}$

- Consider a theory in D dimensions with a (2+1)-dimensional *critical* brane.
- Terminology: critical brane on a circle \rightarrow critical string.

emergent membrane limit in the D-dimensional theory

emergent string limit in the (D-1)-dimensional theory?

• For the critical membrane:

$$\frac{T_{\mathrm{brane}}^{(D)}}{\left(M_{\mathrm{pl}}^{(D)}\right)^{3}} \rightarrow 0 \quad \text{while} \quad \frac{T_{\mathrm{brane}}^{(D)}}{\left(M_{\mathrm{KK}}^{(D)}\right)^{3}} \sim 1$$

• Compactification ($R_{S^1} = \text{const.}$) \rightarrow pathological string limit

$$\frac{T_{\rm str}^{(D-1)}}{\left(M_{\rm KK}^{(D-1)}\right)^2} = \frac{T_{\rm brane}^{(D)} \cdot R_{S^1}}{\left(M_{\rm KK}^{(D)}\right)^2} = \frac{T_{\rm brane}^{(D)}}{\left(M_{\rm KK}^{(D)}\right)^3} \cdot \frac{M_{\rm KK}^{(D)}}{M_{\rm KK}^{S^1}} = \frac{M_{\rm KK}^{(D)}}{M_{\rm pl}^{(D)}} \longrightarrow 0$$

Consistent dimensional reduction of ESC → constrains membrane limits!

Consistency under dimensional reduction as guiding principle:

```
[Heidenreich, Reece, Rudelius '15, '16, '19]

[Palti '19] [Cremonini, Jones, Liu, McPeak, Tang '20] [Rudelius '21]

[Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22]
```

Marginally consistent scaling as $\mu \to \infty$:

$$\frac{\left(\mathcal{M}_{KK}^{(D)}\right)^3}{\left(\mathcal{M}_{pl}^{(D)}\right)^3} = \frac{1}{\mu^3} \quad \text{and} \quad \frac{T_{\text{brane}}}{\left(\mathcal{M}_{pl}^{(D)}\right)^3} = \frac{1}{\mu^2}$$

Membrane decouples \rightarrow decompactification!

- Concrete realization: 11-dimensional M-Theory on Calabi-Yau three-fold X₆
 → 5D theory with N=2 supersymmetry.
- Scalars organized by SUSY: vector multiplets and hypermultiplets.
- Hypermultiplets: volume V_{X_6} and complex structure z^i .
- Complex structure moduli control volumes of three-cycles $\Sigma_3 \subset X_6$.
- M-Theory contains a (5+1)-dimensional object: M5-brane
- Idea: Find infinite distance limit where $vol(\Sigma_3) \rightarrow 0$. M5-brane wrapped on Σ_3 :

(2+1)-dimensional tensionless membrane.

- Setup: SYZ-fibration in large complex structure limit.
- Tension of the wrapped M5:

$$\frac{T_{\rm M5}}{\left(M_{\rm pl}^{(11)}\right)^3} \sim \frac{1}{\lambda^3}$$

Kaluza-Klein tower from base scales in the same way:

$$\frac{M_{\rm KK}^3}{\left(M_{\rm pl}^{(11)}\right)^3} \sim \frac{1}{\lambda^3}$$

- ⇒ emergent membrane limit!
- Important: Corrections! M2- and M5-instantons.

Idea: Relate to similar setup of [Baume, Marchesano, Wiesner '19]:

- Hypermultiplets of M-theory on X_6 (5D) and type IIA string theory on X_6 (4D) can be non-trivially identified.
- We show: emergent membrane limit (M5 on Σ_3) maps to pathological string limit (D4 on Σ_3), equivalent to D1-limit studied by [Baume, Marchesano, Wiesner '19].
- Pathological string limit is modified to emergent string limit by instanton corrections [B-M-W '19].
- Result: emergent membrane limit is modified to decompactification limit by instanton corrections.
 [DK, Álvarez-García, Weigand '21].

Summary

- Physics of infinite distance limits is universally governed by a tower of KK modes or string excitations.
- We have clarified the role of membranes in this picture:

Consistent dimensional reduction implies their decoupling!

Thank you!

